
Team 42
Client: Vicky Thorland-Oster, Tina Prouty

Adviser: Thomas Daniels

Team Members/Roles

Ryan Tullis – Team Lead

Dillon Gesy – Administrative Lead

Nicolas Figueroa Calderas – Frontend Developer

Charles “Joe” Hosier – Frontend Developer

Abdullahi Abdullahi – Backend Developer

sdmay24-42@iastate.edu

Team Website

https://sdmay24-42.sd.ece.iastate.edu


Introduction/Background
Problem statement
Initially, the problem given to us was to create an optimal schedule given restraints.
However, this was quickly deemed very difficult due to the very human process our
clients go through to schedule the classes. Therefore, our goal has shifted to creating a
class-scheduling visualization tool. Our end goal is to create a system that our clients
can use each year to help aid them in scheduling.

Intended users and uses
The project is specifically intended to be used by the schedulers within the Department
of Electrical and Computer Engineering. In Fall 2023, Vicky Thorland-Oster was in
charge of scheduling. Due to Tina Prouty taking over in 2024, she is now the main
client. Currently, the process Vicky and Tina do to schedule the classes is very time
consuming given all the different requirements and restraints on when classes can and
cannot be. In the future with more work done, this project could easily adapt to help
other departments as well.

Related products
Our project closely resembles the Iowa State University Schedule of Classes, found
here. Although this is a great scheduler to base our project off of, there were two key
problems.

1) It is made for students
2) It uses Access+ to populate its data

1) Matters because students have a very different schedule than professors. For
example, students have to schedule based around their flowchart, while
professors just need to have a room and time scheduled.

2) Is important because Iowa State University is shifting to Workday. Currently, all
systems using or relying on Access+ will cease to work in the near future.

Although the Schedule of Classes will soon cease to be functional, it encaptures the
general idea and execution of our project.

https://classes.iastate.edu/


Revised Design
Requirements

The following is a list of functional requirements we determined with our client at the
start of the Spring 2024 semester.

● Requirement #1: View/edit past schedules
○ Let our client be able to view past year’s schedules with our program to

cross reference when making their schedules

○ Let our client be able to import a past year’s schedule with our program in

order to create a new schedule

● Requirement #2: Filter visible classes
○ Let our client be able to filter the visualizer by multiple things:

■ Classes

■ Departments

■ Labs, Recitations

■ Days

● Requirement #3: Exportation
○ Give our client a compiled list of data of what they scheduled using our

program

■ For example, exporting to Excel each class and its data, such as

when it was scheduled, section number, professor, etc.

● Requirement #4: Importation
○ Allow our client to import schedule data

■ For example, being able to import data from Fall 2024. We will not

have this data as we will be graduated, so our user needs to have a

way to import it.

○ Allow our client to import new class times data

■ For example, classes in the past semester have started at 8:00.

Now, they can start at 7:45.

○ Allow our client to import degree flowcharts

■ Being able to import degree flowcharts will help with conflict

checking in Requirement #5



● Requirement #5:Warnings

○ Conflict check, through the flowcharts, whether or not a class can be

scheduled at a time.

Below describes the non-functional requirements of our project.

● Requirement #1: Usability
○ Allow our client to navigate our system easily

● Requirement #2: Scalability
○ As the data grows larger and larger over the years, the system should also

scale

Engineering standards
More standards also apply to our project. However, we found these to be the most
relative to our project and end goal.

ISO/IEC 25010:2011 - The software made is of quality and has specific characteristics
that entails the quality.
ISO/IEC/IEEE 29148:2018 - The software’s requirements will be progressively
elaborated on through the project’s lifecycle. We will get closer to what the client wants
over time.

Security concerns and countermeasures
Our data is completely safe and publicly available. There are no security concerns
regarding our project due to it being a local application. If our application were hosted
online like Iowa State University’s Schedule of Classes, we would need to look into
encryption.

Description of evolution since 491
Our concept from 491 used an entirely different tech stack - besides the SQLite
database. Initially, we decided on Java using the Eclipse IDE with Google Web Toolkit.
We then changed it to C# using the MAUI framework. The ideas remained similar, but
our functionality under a time constraint shifted us from conflict checking to schedule
editing. Below are figures of our very concept to what it is now.



491 Design 0

492 Design



Implementation Details
Detailed design
Our project has multiple pages and ways to interact with the project. We have
everything broken up into Data, Models, ViewModels, and Views. A majority of our
project relies on the ViewModels and Views, since it is a visualizer.

Description of functionality
Below describes the main/important functionality of each component. It will entail why it
exists, what it is supposed to do, and the current implementation at this point.
Data: Import.cs
The import class does exactly what it says - imports data into our system. Other similar
senior design projects have taken in data from Iowa State University’s Schedule of
Classes, described earlier. We knew this would not be robust and would eventually
break our project due to the implementation of Workday. Therefore, we decided to ask
the Registrar’s office and our client for previous semester class data. However, since
Workday is being implemented, both our client and the Registrar’s office were
completely taken up by Workday problems, so we never got access to this data. Since
we don’t have a file to reference what an imported file might look like, our import
architecture isn’t fully flushed out for user-use. To get something in our system, we
imported COM S classes from an online PDF file, found here. Due to the nature of
copying data from a PDF file, we had to manually format and standardize the text in a
.txt file - something we wouldn’t need to do in the future once Workday is implemented.
Below is an example of the process from taking it from a .pdf file to a .txt file.

https://www.registrar.iastate.edu/sites/default/files/uploads/catalog/schedule/Fall/SoC%20Final%20F23.pdf


PDF file



txt file



Along with the Import functionality, comes the import page in Views, which looks like the
following:

The import data function is supposed to take in a formatted file full of a semester’s
classes, given a file name. However, it currently only imports a specified .txt file. It is
then supposed to display it in the Time Grid.
The Import into SQLite function imports the data directly into the local SQLite database.
This is unimplemented at the moment.

Data: Import.cs
The export class also does exactly what you would expect it to do. It takes in
information and exports it into a .txt file. This class takes in Course objects with Section
objects and lists all of its relative information in a .txt file. Until we receive data from the
Registrar’s office, we have no idea about the formatting of information, so this is the
next best thing.



Below is our export page:

The following is our .txt file output after clicking the export data button:



Views: Time Grid
This view is the main point of our project. This page’s intent is to display courses on a
time grid with the ability to filter which classes are shown. Clicking on a course
displayed on the time grid brings a popup that provides information about the course.
The grid interacts with the database and import function to display the courses.

Below is our current Time Grid page:

In reality, our time grid doesn’t have much functionality. The filters are not yet
implemented and our courses are currently not being displayed given information.



Views: Courses Page
This view stores all of our courses in list form. A course can be added, deleted, and
edited on this page. The course delete button deletes the course from the database, as
the add button adds it to the database. The edit button gives the user the ability to
change any information about the course.

Below is our Courses Page(s):

Everything on the Courses Page is implemented.



Notes on implementation
As seen above, most of the implementations for our ideas on the project are incomplete.
There are a few reasons we did not get as far as we wanted with the project, such as
Workday being implemented, being unfamiliar with the tech stack, unclear work
distribution, and other issues. Future work on this project should see this fully
implemented in a semester or less.

Testing
Process
Due to an incomplete project, we were unable to test most of the functionality with the
project. Most of the testing done was debugging to make sure an intended function
works.

Results
Since a majority of the project is unimplemented, testing results only come from if the
intended function works or not.

Broader Context
Generally, our outlook on these context areas haven’t changed from our first design.
Public health, safety, and welfare:
Helps the Iowa State University community - specifically the schedulers. It gives the
schedulers, our clients, more context when they schedule classes and

Global, cultural, and social:
We reflect all of Iowa State University’s standard practices.

Environmental:
The only environmental concern is energy consumption, which a device requires to run.

Economic:
There is no economic impact.



Conclusions
Review progress
Overall, I think we as a team and individuals are disappointed with our total progress on
the project. Although we had good ideas and had everything laid out, we had trouble
executing our plans. A majority of our completed work is just the ground-work/basis of
our total project.

Discuss value your design provides toward the problem
With a little work, information regarding past semesters can be shown to our clients to
reference when scheduling classes.

Potential future steps
Future steps would be to allow them to filter and edit classes as they see fit. Populating
the database with past semesters and giving the user full control on which data is used
on the time grid would be super useful to reference.

Conclusions
Appendix 1 - Operation Manual
To use our project, the user would upload the project to their computer using a flash
drive. The flash drive would contain the project executable for the user to run. The main
hub for all our separate pages is on the top right corner, with the 3 lines. Here, you can
navigate to which page you want to do what you need. If just referencing past
semesters, you should navigate to the import page and then to the time grid.



Appendix 2 - Alternative/initial version of design
An alternative version of this design is hosted on the web, like Iowa State University’s
Schedule of Classes. This takes a different approach and has different broader
contexts, as it is hosted on a server. Here is an early design:



Another design had more focus on scheduling and their conflicts, focused on letting the
user know where two classes couldn’t be scheduled. An early drawn image is provided
below:



Appendix 3 - What we learned
Throughout the project, we learned a lot about what it means to develop a software
project and some do’s and don’ts. Although our project is very incomplete, we can still
take away very valuable lessons learned from our time developing it.

● Group communication and workflow is very important
○ If one person starts to fall behind, sometimes the whole group can fall

behind
○ Absences with no repercussions can lead to less attendees and overall

work output
○ If someone is unresponsive, it can put a fast halt on any work

● Using a system you are familiar with is a big deal
○ Due to only a few somewhat familiar with MAUI, .NET, and C#, this led to

people being very unsure on what to do and how to do it
○ If help is needed regarding a tech stack you’re unfamiliar with, it relies on

the response of the people who do know it, creating a potential reliability
problem

○ Having a new system takes time to learn, so you need to set time aside to
understand how it works

● Creating a GUI is hard
○ Our client initially told us in 2023 that creating a GUI was going to be very

difficult
○ While we still think our choice to create a GUI was better than using a

Greedy algorithm, the combination of creating a GUI and using a tech
stack new to most created a recipe for disaster

● Milestones are important
○ Throughout most of the semester, work rarely got done unless it needed to

be done. The same idea that if you give someone a deadline to code
something, the code will not be done until near the deadline

○ In order to counteract this, we decided to schedule demos. However, by
this point we had mostly already gotten super frustrated with the GUI and
new tech stack

Appendix 4 - Code
Most of our code currently resides on our dev branch on our git repository, found here:
https://git.ece.iastate.edu/sd/sdmay24-42/-/tree/dev?ref_type=heads

https://git.ece.iastate.edu/sd/sdmay24-42/-/tree/dev?ref_type=heads

