
Team 42
Client: Vicky Thorland-Oster

Adviser: Thomas Daniels

Team Members/Roles

Ryan Tullis – Team Lead

Dillon Gesy – Team Organizer

Nicolas Figueroa Calderas – Frontend Developer

Charles “Joe” Hosier – Frontend Developer

Abdullahi Abdullahi – Backend Developer

sdmay24-42@iastate.edu

Team Website

Revised: 12/4/2023 v9.0.0

https://sdmay24-42.sd.ece.iastate.edu


Executive Summary 4
Development Standards & Practices Used 4
Summary of Requirements 4
Applicable Courses from Iowa State University Curriculum 4
New Skills/Knowledge acquired that was not taught in courses 4

Team 5
1.1 Team Members 5
1.2 Required Skill Sets for Your Project 5
1.3 Skill Sets covered by the Team 5
1.4 Project Management Style Adopted by the Team 5
1.5 Initial Project Management Roles 6
2.1 Problem Statement 6
2.2 Requirements and Constraints 7
2.3 Engineering Standards 7
2.4 Intended Users and Uses 8

Project Plan 8
3.1 Project Management/Tracking Procedures 8
3.2 Task Decomposition 9
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 9
3.4 Project Timeline/Schedule 11

Project Design 15
4.1 Design Content 15
4.2 Design Complexity 16
4.3 Modern Engineering Tools 17
4.4 Design Context 18
4.5 Prior Work/Solutions 19
4.6 Design Decisions 19
4.7 Proposed Design 19
4.7.1 Design 0 (Initial Design) 20
4.7.2 Design 1 (Design Iteration) 21
4.8 Technology Considerations 23
4.9 Design Analysis 23

Project Testing 23
5.1 Unit Testing 23
5.2 Interface Testing 23
5.3 Integration Testing 23
5.4 System Testing 24
5.5 Regression Testing 24
5.6 Acceptance Testing 24



5.7 Security Testing (if applicable) 24
5.8 Results 24

Project Implementation 25
6 Implementation 25

Project Professionalism 25
7 Professionalism 25
7.1 Areas of Responsibility 25
7.2 Project Specific Professional Responsibility Areas 27
7.3 Most Applicable Professional Responsibility Area 28

Project Closing 28
8 Closing Material 28
8.1 Discussion 29
8.2 Conclusion 29
8.3 References 29
8.4 Appendices 30
8.4.1 Team Contract 35



Executive Summary
Development Standards & Practices Used

The software practices will follow the standard software project practices. The program should
work on most systems and be relatively small in size.

Following the waterfall project management style with integrated things from the agile process
will help us with the project’s lifecycle.

The project will be tested thoroughly to make sure the final product meets the requirements
without interruptions.

Summary of Requirements

● Project will be an executable (.exe)

● The design (UI) will be easy for someone to use

● The user experience (UX) will be a very simple and trivial

● The executable should run easily, even on a lower-end system

● The project should not exceed an hour’s worth of runtime

● Differentiate weight of conflict

Applicable Courses from Iowa State University Curriculum

SE 185 SE 309

COM S 227 COM S 311

COM S 228 SE 317

COM S 363 SE 339

SE 319 SE 329

New Skills/Knowledge acquired that was not taught in courses

New Skills/Knowledge acquired that was not taught in courses

Internship experience – managing interns and interning at Wells Fargo

Personal projects – Embedded programming, hosting a server, playing around with Iowa State
curriculum concepts on our own



Team
1.1 Team Members

Ryan Tullis – Team Lead

Dillon Gesy – Team Organizer

Nicolas Figueroa Calderas – Frontend developer

Charles “Joe” Hosier – Frontend developer

Abdullahi Abdullahi – Backend developer

1.2 Required Skill Sets for Your Project

Project & team management

Software skills (Java, JavaScript, Python, C, C#, etc)

Teamwork to combine individual components

Documentation for the project

1.3 Skill Sets covered by the Team

Project & team management: Ryan, Dillon

Software skills: Ryan, Dillon, Nicolas, Joe, Abdul

Teamwork to combine components: Ryan, Dillon, Nicolas, Joe, Abdul

Documentation for the project: Ryan, Dillon, Nicolas

1.4 Project Management Style Adopted by the Team

Waterfall project management mixed in with agile processes for linear, yet adjustable work while
we develop it throughout both semesters.



1.5 Initial Project Management Roles

Ryan: Interact with the client to learn requirements and set up group meetings

Dillon: Documentation for what happens during the meetings and assign tasks

Nicolas: Design and come up with/document our potential project designs

Joe: Implement individual components for our chosen project design

Abdul: Implement and test individual component

Project Introduction
2.1 Problem Statement
Our goal is to create a class scheduler visualization tool. We want to be able to use scheduling
data professors are given in order to show where conflicts may occur with other classes. It’s
very difficult to make a schedule good for all students, so this approach focuses on the
department or professor. The tool should be used as an aid to professors to help submit their
schedule of classes. With our approach, we want this solution to be able to be used even after
Access+ is gone. The end goal is to at minimum let professors insert their data manually. If
there’s time, we can also look into getting the data directly from Workday. Furthermore, allowing
users of the application to search by class or professor would be beneficial for the user.



2.2 Requirements and Constraints
The main requirement for the project is to make a visualization tool for the client.
Moving on to the subtask requirements, they entail the following

- Search by professor
- Search by class
- Good GUI for the user, the users are not software engineers
- Display conflicts and their weights with professors/classes
- Be able to see past semesters
- Have a way of inserting data

Functionally, we want the project to be an app. The app needs to be able to collect data and
display it visually in order to help schedule future classes.
Our resource requirements depend on the application being an executable. For an app, we
need to be able to import and organize data locally, which benefits the user by keeping data
private.
Our GUI needs to be user friendly so anyone can use the class scheduler. The user experience
should be easy for newcomers to pick up and use.
The app should only be available privately, therefore will have no economic or market
requirements.
For environmental requirements, our project does use a server. Therefore, there is little to no
environmental impact.
The UI needs to be displayed in such a way that the user can do what they need to do easily.
Performance-wise, our app needs to be able to run its tools and algorithms within a reasonable
time-frame.
Legally, we need to make sure all information in our database is public information - unless
inserted by someone manually.
For maintainability, it’s left up to Iowa State if they want to keep using the application to help
schedule their classes. Only bug fixes should need to be done.
Testing requirements entail making sure the app works using different optional functionalities
such as importing data and using old data for visualization.

2.3 Engineering Standards
ISO/IEC 25010:2011 - The software made is of quality and has specific characteristics that
entails the quality.
ISO/IEC/IEEE 29148:2018 - The software’s requirements will be progressively elaborated on
through the project’s lifecycle. We will get closer to what the client wants over time.



2.4 Intended Users and Uses
The Department of Electrical and Computer Engineering in the College of Engineering at Iowa
State University would benefit the most from our project. The project is specifically intended to
make it easier to schedule classes within the Department of Electrical and Computer
Engineering. Vicky Thorland-Oster, the Assistant Director of Student Services in the Department
of Electrical and Computer Engineering, who is our advisor on the project, is currently in charge
of creating the schedule for future semesters. However, soon Tina Prouty will be taking over the
process. Vicky stated that the current process in place is very time consuming given all the
different requirements and restraints on when classes can and cannot be. The only use case for
our given project is to visualize different options of schedules for future semesters, given a set of
upcoming classes

Project Plan
3.1 Project Management/Tracking Procedures
We will use an agile project management style because it is the one that most of us in our group
feel comfortable with. We want to have a minimum viable product that we can show at the end
of the course, agile will help us to work in sprints and be able to create a product that we can
demo. Agile will help us create the base of our project and then allow us to continue to add onto
it with additional sprints depending on the time available to us before the end of the course.

We will utilize Gitlab, Trello, and Discord for our project management, with Gitlab and Discord
being the main focus.



3.2 Task Decomposition

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
Key milestones for the project can help track progress and ensure that the project stays on
course. Here are some key milestones for the project based on the dependency graph, along
with how to measure progress on each task:

1. **Project Kickoff and Inception (Milestone 1)**
- Tasks: Project Inception (Task 1)
- Measurement:

- Completion of project scope document.
- Approval of the initial project plan and backlog.



2. **Backend Development Completion (Milestone 2)**
- Tasks: Backend Development (Task 2)
- Measurement:

- Successful setup of the development environment.
- Completion of database schema design.
- Implementation of CRUD operations for class data.
- Availability of a functional API.

3. **Frontend Development and Integration (Milestone 3)**
- Tasks: Frontend Development (Task 3) and Integration (Task 4)
- Measurement:

- User interface design completion.
- Implementation of user authentication and authorization.
- Successful integration of the frontend and backend.
- Initial testing of data flow.

4. **User Stories and Feature Development (Milestone 4)**
- Tasks: User Stories and Feature Development (Task 5)
- Measurement:

- Prioritized user stories.
- Incremental feature development.
- Regular sprint reviews with functional features.

5. **Agile Sprints (Sprint Milestones)**
- Task: Agile Sprints (Task 6)
- Measurement:

- Completion of planned sprint tasks.
- Daily stand-up meetings held consistently.
- Review meetings at the end of each sprint with demonstrated features.

6. **Testing and Quality Assurance (Milestone 5)**
- Task: Testing (Task 7)
- Measurement:

- Execution of test cases for frontend and backend.
- Successful integration testing.
- Usability testing with feedback and necessary adjustments.

7. **Project Review and Retrospective (Milestone 6)**
- Task: Project Review and Retrospective (Task 8)
- Measurement:

- Successful project review with objectives met.
- Action items identified in the retrospective for improvement.
- Archived project files and documentation.



8. **Project Completion (Milestone 7)**
- Measurement:

- Final stakeholder meeting held.
- Official closure of the project.
- Evaluation of the project's success based on feedback and metrics.

3.4 Project Timeline/Schedule

Project: College Class Scheduler
| Task | Start Date | End Date | Duration |
|---------------------------------------------------------------------------|---------------------|---------------------|-------------|
| Project Inception | Oct 2023 | Nov 2023 | 2 months |
| Backend Development | Dec 2023 | Feb 2024 | 3 months |
| Frontend Development and Integration | Jan 2024 | Mar 2024 | 3 months |
| User Stories and Feature Development | Feb 2024 | Mar 2024 | 2 months |
| Agile/Waterfall Sprints | Feb 2024 | Mar 2024 | 2 months |
| Testing | Apr 2024 | May 2024 | 1 month |
| Project Review and Retrospective | May 2024 | May 2024 | 1 month |
| Project Closure | May 2024 | May 2024 | 1 month |

Fig. 1: A schedule of our project



3.5 Risks and Risk Management/Mitigation

1. **Project Inception**
- Risk: Can’t agree on project backlog (Probability: Low)
- Mitigation: Conduct team vote to determine what the project backlog will be

2. **Backend Development**
- Risk: Unexpected technical challenges in database design (Probability: Medium)
- Mitigation: Seek out TA help to help process of creating a database design and ask professor

for suggestions as well

3. **Frontend Development and Integration**
- Risk: Integration difficulties between frontend and backend (Probability: High)
- Mitigation: Seek out TA help to help process of connecting frontend with backend and ask

professor for suggestions as well

4. **User Stories and Feature Development**
- Risk: Changing requirements (Probability: Low)
- Mitigation: Change user stories and focus more on agile methodology to help keep things on

track

5. **Agile Sprints**
- Risk: Incomplete sprint goals due to underestimated complexity (Probability: Low)
- Mitigation: Prioritize user stories accurately, and put more time during the week to complete

user stories

6. **Testing**
- Risk: Insufficient time for comprehensive testing (Probability: Medium)
- Mitigation: Allocate more time for testing in the project plan. Automate repetitive tests to save

time.

7. **Project Review and Retrospective**
- Risk: Incomplete final review (Probability: Low)
- Mitigation: Plan documentation for college of computer and electrical engineering faculty to

use to understand class scheduler.



3.6 Personnel Effort Requirements

**Task:** Project Inception

| Task Description | Estimated Effort (Person-Hours) |
|----------------------------------------------------------------|-----------------------------------------------------|
| Define project scope, objectives, stakeholders | 40 |
| Formulate initial project plan | 20 |
| Create a project backlog | 30 |
| **Total Effort** | **90 Person-Hours** |

**Explanation:** In the project inception phase, you'll need to spend significant time defining
project requirements and goals (40 hours), planning the project (20 hours), and creating a
backlog of tasks (30 hours). These efforts are crucial for setting the project's direction.

**Task:** Backend Development

| Task Description | Estimated Effort (Person-Hours) |
|----------------------------------------------------------------|------------------------------------------------------|
| Set up the development environment | 40 |
| Design the database schema | 60 |
| Implement database CRUD operations | 80 |
| Develop an API to expose database functionality. | 100 |
| **Total Effort** | **280 Person-Hours** |

**Explanation:** Backend development involves setting up the environment (40 hours),
designing a robust database schema (60 hours), implementing CRUD operations (80 hours),
and creating an API (100 hours), which is a substantial effort.

**Task:** Frontend Development and Integration

| Task Description | Estimated Effort (Person-Hours) |
|----------------------------------------------------------------|-----------------------------------------------------|
| Set up the development environment | 40 |
| Design the user interface | 80 |
| Implement user authentication and authorization| 60 |
| Create user interfaces for class schedules | 100 |
| Connect frontend to the backend | 80 |
| Test data flow and handle errors | 60 |
| **Total Effort** | **420 Person-Hours** |

**Explanation:** Front-end development and integration require setting up the environment (40
hours), designing a user-friendly interface (80 hours), implementing security features (60 hours),
creating user interfaces (100 hours), and ensuring proper integration and testing (80 hours).



**Task:** User Stories and Feature Development

| Task Description | Estimated Effort (Person-Hours) |
|----------------------------------------------------------------|------------------------------------------------------|
| Identify and prioritize user stories | 40 |
| Develop features incrementally | 160 |
| Review and adapt user stories as needed | 60 |
| **Total Effort** | **260 Person-Hours** |

**Explanation:** User stories and feature development involve identifying and prioritizing user
stories (40 hours), developing features incrementally (160 hours), and continuously reviewing
and adapting user stories (60 hours) to align with project goals.

**Task:** Agile Sprints

| Task Description | Estimated Effort (Person-Hours) |
|----------------------------------------------------------------|-----------------------------------------------------|
| Plan and execute iterative development sprints | 120 |
| Assign and track tasks for each sprint | 60 |
| Hold daily stand-up meetings | 40 |
| Review and demonstrate completed features | 80 |
| **Total Effort** | **300 Person-Hours** |

**Explanation:** Agile sprints involve planning and executing sprints (120 hours), task tracking
(60 hours), daily stand-up meetings (40 hours), and feature reviews (80 hours) for iterative
development.

**Task:** Testing

| Task Description | Estimated Effort (Person-Hours) |
|----------------------------------------------------------------|-----------------------------------------------------|
| Develop and execute test cases | 120 |
| Perform integration testing | 80 |
| Conduct usability testing | 60 |
| **Total Effort** | **260 Person-Hours** |

**Explanation:** Testing tasks include developing and executing test cases (120 hours),
integration testing (80 hours), and usability testing (60 hours) to ensure the system's quality and
usability.



**Task:** Project Review and Retrospective

| Task Description | Estimated Effort (Person-Hours) |
|----------------------------------------------------------------|-----------------------------------------------------|
| Conduct a project review | 40 |
| Hold a team retrospective | 40 |
| **Total Effort** | **80 Person-Hours** |

**Explanation:** Project review and retrospectives involve assessing project objectives (40
hours) and discussing team performance and improvements (40 hours).

**Task:** Project Closure

| Task Description | Estimated Effort (Person-Hours) |
|----------------------------------------------------------------|-----------------------------------------------------|
| Archive project files and documentation | 40 |
| Conduct a final stakeholder meeting | 40 |
| Evaluate the project's success | 20 |
| **Total Effort** | **100 Person-Hours** |

**Explanation:** Project closure tasks include archiving project files and documentation (40
hours), holding a final stakeholder meeting (40 hours), and evaluating the project's success (20
hours).

**Total Project Effort:** **1,900 Person-Hours**

Project Design
4.1 Design Content
The design content in the project plan is primarily focused on Milestones 2 and 3, which involve
the development and integration of the backend and frontend of the project:

1. Backend Development Completion (Milestone 2): This milestone includes the design of
the database schema, which is a crucial aspect of the project's design. It also involves the
successful setup of the development environment, which may include designing the architecture
of the backend system. Additionally, the implementation of CRUD (Create, Read, Update,
Delete) operations for class data implies designing the API endpoints and associated data
structures.



2. Frontend Development and Integration (Milestone 3): This milestone encompasses the
design of the user interface, which is a key aspect of the project's design content. It also
involves the implementation of user authentication and authorization, which includes designing
access control mechanisms. The successful integration of the frontend and backend implies the
design of the data flow and the interaction between these components.

Overall, the design content in the project plan includes database schema design, API design,
user interface design, and system architecture design to ensure the project's successful
development and integration.

4.2 Design Complexity
To provide evidence that a project is of sufficient technical complexity, we can evaluate the
project against the provided metrics and justify the complexity using specific components,
subsystems, and technical principles. Let's consider these two metrics:

1. The design consists of multiple components/subsystems that each utilize distinct
scientific, mathematical, or engineering principles:

In the project plan described earlier, several components and subsystems are involved, each
requiring distinct technical principles:

- Backend Development (Milestone 2): This component involves designing the database
schema, which requires knowledge of database management and design principles.
Additionally, the implementation of CRUD operations necessitates understanding of software
engineering and API design.

- Frontend Development and Integration (Milestone 3): The frontend development
component involves user interface design, which includes principles of user experience (UX)
design and user interface (UI) design. The integration task requires knowledge of software
architecture and system integration principles.

- User Stories and Feature Development (Milestone 4): The development of user stories
and features demands a deep understanding of software engineering, software design patterns,
and coding practices.

- Agile Sprints (Sprint Milestones): The Agile methodology involves various components,
including daily stand-up meetings and review meetings, each of which follows specific Agile
principles and practices.

- Testing and Quality Assurance (Milestone 5): This phase includes the execution of test
cases, integration testing, and usability testing, all of which involve distinct testing
methodologies and quality assurance principles.



2. The problem scope contains multiple challenging requirements that match or exceed
current solutions or industry standards:

The project involves several challenging requirements that can be considered to match or
exceed current industry standards:

- The development of a functional API (Milestone 2) is a challenging requirement that needs to
meet industry standards for API design and performance.

- User authentication and authorization (Milestone 3) require robust security measures, which
are crucial to match industry standards for data protection and user access control.

- Usability testing (Milestone 5) goes beyond basic functionality testing and aims to match
industry standards for user experience and usability, which can be highly demanding.

- Regular sprint reviews (Sprint Milestones) with functional features demonstrate a
commitment to delivering high-quality software, which matches industry standards for Agile
development.

- Project review and evaluation (Milestone 7) based on feedback and metrics aims to exceed
industry standards by continuously improving the project based on data-driven insights.

4.3 Modern Engineering Tools
Simple software engineering tools such as databases and IDEs.
SQLite database file - to store new and old data securely and query it in the executable
IDE - connecting the code language to machine code

Eclipse - Java IDE with a GWT Designer integration
GUI - Google Web Toolkit, uses Java

GWT Designer - Creation of user interfaces



4.4 Design Context

Area Description Examples

Public health,
safety, and
welfare

Helps the Iowa State University
community, specifically instructors but
can help students and other faculty as
well.

Provides instructors more
context when they schedule
classes and may help students
sign up for classes earlier in the
future.

Global, cultural,
and social

We reflect all of Iowa State
University’s standard practices.

All practices revolving around
the project should be kept up to
standard and will conform to all
Iowa State University’s
practices.

Environmental The only environmental impact our
project has is energy consumption.

If the user doesn’t have a device
to run the application, they won’t
be able to use it. In turn, the
device requires energy.

Economic There is no economic impact to this
project.

The application will be free and
safe to use. There will be no
chance of data being leaked due
to security flaws.

Public Health, Safety, and Welfare:

N/A

Global, Cultural, and Social:

N/A

Environmental:

N/A

Economic:

- Economic considerations include if the class scheduler can improve the amount of time and
resources used to create a schedule without any conflicts.



4.5 Prior Work/Solutions
The projects that have already been done that are similar to ours are other scheduling systems.
These systems are similar but try to create an algorithm to actually schedule the classes.
Furthermore, they use already-developed algorithms or libraries to help do this. However, we
just want to display conflicts graphically. Most of these systems include a UI with some form of
data that can be rearranged. This is what we plan to do as well, just using the data given to us
by the College of Computer and Electrical Engineering.

4.6 Design Decisions
Our data will be stored in a .sqlite file, which can be queried using Java. Specifically, we will use
the JDBC (Java Database Connectivity) API with the SQLite JDBC driver.

We will implement features like class overlap detection, severity tiers for the overlaps, visual
image of all the scheduled classes, and a search function for class and professor.

4.7 Proposed Design
We looked at different schedulers to get an idea of how we want to implement different features.
We looked at the UX(user experience) of these schedules to see if it was easy to use and on
how efficient they were. Some of the schedulers were too complex.



4.7.1 Design 0 (Initial Design)

Design Visual and Description

Fig. 2: An early design concept for our application

User Interface: This is where the users interact with the system. This could be a web
application, mobile app, or a desktop application. Users can view the schedule and make
changes.
Database: This is where the information about the courses offered is stored, such as course
name, time, location and instructor.
Security and Authentication: To ensure data security and access control to sensitive
information. To verify the identity of the user.
Scheduling Engine: Generates schedules based on various constraints, such as course time
and room availability.



Functionality
The class scheduler would run on a computer by the ECpE department. It will schedule the
classes and labs offered depending on time and room availability. It satisfies the requirements
for this project.

4.7.2 Design 1 (Design Iteration)

Design Visual and Description

Fig. 3: Our design 0 but evolved iteratively



Fig. 4: Early design and rough sketch of a sample interface

The Design 1 goes into more detail on what tools we are using and how we are going to use
them.
Using fig. 4, we want to display our data graphically and in an ideal way.
One thing missing from fig. 4 is implementing a way to fix scheduling conflicts.

A majority of design 1 will be the same as design 0, but design 1 will have more specific parts
such as the frontend and backend. For example, an agreed upon user interface will be in place,
an agreed upon database will be used, and an algorithm for the scheduling engine will be more
tested.



4.8 Technology Considerations
While later it is listed as a weakness, not having a server is also a strength. By not using a
server, we do not have to use dedicated resources for hosting our project. Therefore, we can
disregard the hassle of setting up the server. This lessens our work and can keep us focused on
the main goal of the project.

Since we are not using a server to host our application, our main weakness is the availability of
the project. Our current goal of the project is to at least be able to store the project on a flash
drive and copy it. However, this is not a good way to share the executable to the instructors.

Some trade-offs we had to make could include things such as our tech stack. Not everyone on
the team has the same skill set when it comes to different coding languages. While some
languages allow us to be more efficient than others, we find it more important to work with
languages that everyone knows or can quickly pick up.

4.9 Design Analysis
We predict our design from 4.7 will not work right away. However, it will be a great start to
making progress in our project. Changes will most likely need to be made in order to get the
project to be functional.
To iterate the design again, while implementing, we will notice some things will be easier to
implement over others. Using this, we will come up with more features and ways to deal with
conflicts. We also predict we will have to make some trade-offs when it comes to adding and
removing features.

Project Testing
5.1 Unit Testing
The individual classes for our user interface and our scheduling engine will be tested as we
develop each individual unit. We will use the selenium testing framework for the frontend and
Junit for the backend.

5.2 Interface Testing
The frontend user interface will be tested as a whole, by itself and with API calls to the backend.
The back end scheduling engine will be tested as a whole using Junit.

5.3 Integration Testing
Critical integration paths for our design are our frontend UI and our backend scheduling engine.
These will be the most critical of our integration paths and we will test the functions and
interfaces, testing for end to end functionality. We will use Selenium and Junit.



5.4 System Testing
System level testing is taking the whole application and testing how different components of the
application interact with one another. All of our unit tests, interface tests, and integration tests
will be used as building blocks for our system testing. Since we will be testing the entire
system's functionality, Selenium is our best available option, since we will be testing straight
from the UI and seeing if the functionality is at 100%.

5.5 Regression Testing
Before finalizing new additions and/or changes to the code, all old functionality must be tested
with the new additions to ensure the code isn’t broken. There will also be test cases for each of
the functionality to alert which of the old functionality might be broken.

5.6 Acceptance Testing
We will go over the design, functional and nonfunctional requirements that the client gave us to
see if each criteria has been met. The client tested out the product to see if all requirements are
met. We will also have users test out the system and give feedback in order to improve the
system.

5.7 Security Testing (if applicable)
The data we are using is general information about classes and labs. Any private information
will be stored locally on the device, which does not entail any security on our end.

5.8 Results
The results of our testing should make sure the executable successfully implements the
requirements in a way the user can understand easily. By testing all features, we can ensure
that the software meets the requirements. For our process, we will be using functional testing.
Furthermore, since we will all be working on the development process for the project, we will be
doing white box testing.

Search by professor Selenium/Junit testing - all classes pertaining
to a specific professor must be displayed

Search by class Selenium/Junit testing - all class data, such
as professors and times, must be displayed

Good GUI for user Have the client, faculty, and other people use
the software to provide a critique of the
display. Allow for suggestions so it can be
changed

Display conflicts and weights Selenium/Junit testing - the algorithm(s) we
make should have the correct conflict weight,
and should be displayed correctly



Search by past semester Selenium testing/Junit testing - classes,
professors, and previous times should be
displayed for past semesters, in order to
guide a current schedule

Insertion of data Manual testing, insert single pieces of data,
groups of data, single piece of faulty data,
and a group of faulty and true data

Project Implementation
6 Implementation
In order to implement our project with a strong user interface/user experience, we need to use a
strong GUI for our application. To our knowledge, implementing the backend and filling the data
will be a trivial and monotonous task. In contrast, building the frontend and displaying the data
graphically will be the most crucial design implementation of our project.

Project Professionalism
7 Professionalism
This discussion is with respect to the paper titled “Contextualizing Professionalism in Capstone
Projects Using the IDEALS Professional Responsibility Assessment”, International Journal of
Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 Areas of Responsibility

Area of Responsibility Definition Code and Context

Work Competence Perform work of high quality,
integrity, timeliness, and
professional competence.

SE 8.02 - Refers to the
software engineers improving
their skills and honing in on
quality software, with
reasonable cost and time.
This code differs as it focuses
on the individual, rather than
the team.



Financial Responsibility Deliver products and services
of realizable value and at
reasonable costs.

SE 1.14 - Refers to software
engineers promoting
maximum quality with the
minimum cost. Finding the
balance between cost and
quality is crucial and
generally the same for both
codes.

Communication Honesty Report work truthfully, without
deception, and
understandable to
stakeholders.

SE 4.06 - Refers to being
honest about reporting to the
client/stakeholder any
problems with the software or
related documents. The two
are similar in a way that it
means clear, honest
communication with the
stakeholder is crucial.

Health, Safety, Well-Being Minimize risks to safety,
health, and well-being of
stakeholders.

SE 4.05 - Refers to keeping
confidential information
confidential from the public.
This reduces the
stakeholder/client’s risk, as
information that should be
private needs to stay private.
This differs as the SE code is
more about the information,
rather than the stakeholder.

Property Ownership Respect property, ideas, and
information of clients and
others.

SE 4.04 - States that the
software engineers should
not knowingly use illegally
obtained or retained software.
By doing this, you respect the
property/ideas of others. The
difference between the two is
that this deals explicitly with
using software you shouldn’t.



Sustainability Protect environment and
natural resources locally and
globally.

SE 1.13 - Refers to
identifying and
acknowledging any ethical,
economic, cultural, legal, and
environmental issues
formally. The two are
relatively the same, but the
global scale is more limited
and SE 1.13 is more of a
general concern.

Social Responsibility Produce products and
services that benefit society
and communities.

SE 6.11 - Exercise
professional responsibility to
society by constructively
serving in civic affairs. The
code is different because one
deals with benefiting society
and the other is more about
not causing harm to society.

7.2 Project Specific Professional Responsibility Areas

Area of Responsibility Definition Application

Work Competence Perform work of high quality,
integrity, timeliness, and
professional competence.

This applies because all members
should contribute to the project
equally. Our team is performing
“medium” well in this area. All
work is eventually done, but in a
lesser-organized manner.

Financial Responsibility Deliver products and
services of realizable value
and at reasonable costs.

This does not apply to our project
as we do not have a financial
impact. Therefore, our project
performance in this area is N/A.

Communication Honesty Report work truthfully,
without deception, and
understandable to
stakeholders.

This area of responsibility applies
to our project due to its
group-work nature. While there
are no explicit stakeholders aside
from the client, we need to report
our work to each other in the
same way. Our group has a “high”
performance in this area, as we
communicate our work clearly
with each other.



Health, Safety, Well-Being Minimize risks to safety,
health, and well-being of
stakeholders.

This does not apply to our
project context because there
is no risk to safety, health, or
well-being of our client. Our
performance is N/A.

Property Ownership Respect property, ideas, and
information of clients and
others.

This applies to our project,
but only minimally. Since we
have to be cautious with
future class data, we have to
respect that information and
handle it accordingly. Our
group has come up with
solutions to handle the data,
therefore the performance is
high.

Sustainability Protect environment and
natural resources locally and
globally.

This does not apply to our
project. We have no sort of
emission or power usage for
a server in our project. Our
project performance is N/A.

Social Responsibility Produce products and
services that benefit society
and communities.

This area of responsibility
applies to our project
because it impacts the Iowa
State Community.
Specifically, it has an impact
on the professors in the
Electrical and Computer
engineering department. By
nature of the project, we have
a high performance in this
area.

7.3 Most Applicable Professional Responsibility Area
The Communication Honesty area of responsibility is the most applicable for our project. It is
key that as a group we communicate honestly and thoroughly in order to plan and complete the
project. Without Communication Honesty, our ideas would not be able to connect and come
together. It is integral to maintain a high standard of this throughout the project’s lifespan.

Project Closing
8 Closing Material
The following describes the formal closure of the project.



8.1 Discussion
The formal closure of this project entails that either all requirements were met or tradeoffs have
occurred. It is entirely possible some things will not be achieved throughout this project’s
lifecycle. For our minimum product, we expect to sort/search our data by professor, class, or
year. We also expect a functional GUI to assist professors in the scheduling of their classes.

8.2 Conclusion
Our work should be working towards the requirements defined in section 2.2. Our overarching
goal is to create an interactive GUI to schedule classes. Our best plan of action to achieving this
is by following our schedule, defined in 3.4. If we find the goals are harder to achieve than
expected, we can solve the issue in the following 2 ways:

● Put more hours and work into the project
● Modify the requirements and make tradeoffs

In the future, it will be easier to design and plan a project due to our experience. Better planning,
familiarizing ourselves with the content better, and more background/routine tasks such as
setting up prototypes are some examples that could help achieve the goals in a smoother way.

8.3 References
None at this point in time.



8.4 Appendices

Fig. 1: An example of what the professors receive when scheduling their classes.



Fig. 2: A prototype GUI
https://www.figma.com/proto/aBOqXGELgJ1MLCjfMjye2l/Sample-Scheduler-Interface?type=des
ign&node-id=101-2&t=KNYjL2ekRsKfh7k1-0&scaling=min-zoom&page-id=0%3A1

https://www.figma.com/proto/aBOqXGELgJ1MLCjfMjye2l/Sample-Scheduler-Interface?type=design&node-id=101-2&t=KNYjL2ekRsKfh7k1-0&scaling=min-zoom&page-id=0%3A1
https://www.figma.com/proto/aBOqXGELgJ1MLCjfMjye2l/Sample-Scheduler-Interface?type=design&node-id=101-2&t=KNYjL2ekRsKfh7k1-0&scaling=min-zoom&page-id=0%3A1


Fig. 3: Our UML Diagram for our data



Fig. 4: A generic flowchart, used for calculating the weight of conflict



Fig. 5: Flowcharts for determining weight of conflict, example of the SE flowcharts



8.4.1 Team Contract
Team Members:

1) Ryan Tullis
2) Nicolas Figueroa Calderas
3) Dillon Gesy
4) Charles “Joe” Hosier
5) Abdullahi Abdullahi

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:
We will meet in the hour before the 491 class every week as well as during TODO for a
total of 2 face-to-face meetings a week.

2. Preferred method of communication updates, reminders, issues, and scheduling
(e.g., e-mail, phone, app, face-to-face):

For all important communication we will be using email for major updates. For any
smaller needs we will communicate via text.

3. Decision-making policy (e.g., consensus, majority vote):
For any major decisions that have conflict, we will have a majority vote to make
decisions.

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes
be shared/archived):

Dillon will be taking notes during our meetings and will send out an email recapping what
was talked about for record keeping.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:
Expected for all members to be at every meeting, if something comes up and has to
miss a meeting, that’s fine, but the individual who missed should communicate with the
team to know what was missed from the meeting.

2. Expected level of responsibility for fulfilling team assignments, timelines, and
deadlines:

Expect all members to fulfill team assignments and deadlines on time. If there is an
issue with an individual potentially missing a deadline, communicate with team members
as soon as possible
.
3. Expected level of communication with other team members:



Strive for good communication when necessary, as long as individual work is being
completed on time, communication doesn’t need to be incredibly detailed.

4. Expected level of commitment to team decisions and tasks:
All team members should be committed to completing deadlines and targets. Working
and communicating to accomplish team goals.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

Ryan Tullis – Client interaction, team organization
Dillon Gesy – Team organization, individual component design, testing
Joe – Individual component design, testing
Nicolas – Individual component design, testing, high-level manager
Abdul – Individual component design, testing

2. Strategies for supporting and guiding the work of all team members:
Keep everyone responsible and up to date with each other. Making sure all code is
reviewed, knowing the requirements, and keeping an open line of communication.

3. Strategies for recognizing the contributions of all team members:
Give everyone some form of valuable work – thank each other for getting work done
before the meetings and keep track of where everyone is at.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to
the team.

Ryan & Nicolas Internship experience with management experience
Dillon & Charles Other group projects at Iowa State

2. Strategies for encouraging and support contributions and ideas from all team
members:

Talking and good communications, make sure people's ideas are heard

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how
will a team member inform the team that the team environment is obstructing their
opportunity or ability to contribute?)

Meet with TA if issue persists past initial conversations from peer-to-peer confrontation.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:



Finish the design part of the project. Get to know everyone in the group. Get a good idea
of what we are going to do next semester.

2. Strategies for planning and assigning individual and team work:
At group meetings we will figure out what needs to be done and assign it appropriately.

3. Strategies for keeping on task:
Have frequent group meetings to understand what needs to be done. Using frequent
communication is also our goal so we know what is going on at all times.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?
First try to handle it internally with our group, to find a middle ground.

2. What will your team do if the infractions continue?
We will then bring it up to the TA in order to move forward with the project.

*************************************************************************************************************
a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.

1) Ryan Tullis DATE 9/10/2023
2) Nicolas Figueroa Calderas DATE 9/10/2023
3) Dillon Gesy DATE 9/10/2023
4) Charles Hosier DATE 9/10/2023
5) Abdullahi Abdullahi DATE 9/10/2023


